A convergent staggered scheme for the variable density incompressible Navier-Stokes equations

نویسندگان

  • Jean-Claude Latché
  • K. Saleh
چکیده

In this paper, we analyze a scheme for the time-dependent variable density Navier-Stokes equations. The algorithm is implicit in time, and the space approximation is based on a low-order staggered non-conforming finite element, the so-called Rannacher-Turek element. The convection term in the momentum balance equation is discretized by a finite volume technique, in such a way that a solution obeys a discrete kinetic energy balance, and the mass balance is approximated by an upwind finite volume method. We first show that the scheme preserves the stability properties of the continuous problem (L-estimate for the density, L(L)and L(H)-estimates for the velocity), which yields, by a topological degree technique, the existence of a solution. Then, invoking compactness arguments and passing to the limit in the scheme, we prove that any sequence of solutions (obtained with a sequence of discretizations the space and time step of which tend to zero) converges up to the extraction of a subsequence to a weak solution of the continuous problem. Key-words : Variable density, Navier-Stokes equations, Staggered schemes, Convergence analysis

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characteristics-Mix Stabilized Finite Element Method for Variable Density Incompressible Navier-Stokes Equations

This paper describes a characteristics-mix finite element method for the computation of incompressible Navier-Stokes equations with variable density. We have introduced a mixed scheme which combines a characteristics finite element scheme for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The proposed me...

متن کامل

Conservative properties of finite difference schemes for incompressible flow

1. Motivation and objectives The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). Experience has shown that kinetic energy conservation of the convective terms is required for stable incompressible unsteady flow simulations. Arakawa (1966) showed that...

متن کامل

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

We propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. The scheme is based on the general ideas proposed in [1] for the two dimensional incompressible Navier-Stokes equations and is then extended to three space dim...

متن کامل

A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids

We present an unconditionally stable second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive Cartesian grids. We employ quadtree and octree data structures as an efficient means to represent the grid. We use the supra-convergent Poisson solver of [C.-H. Min, F. Gibou, H. Ceniceros, A supra-convergent finite difference scheme for the variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2018